Durethan® BKV60XF

60% Glass Fiber Reinforced, Injection Molding, Heat Stabilized, High Flow

General Information

Durethan® is the trade name for our range of engineering thermoplastics based on polyamide 6 and polyamide 66. These polyamides are partially crystalline thermoplastics which offer an ideal combination of properties, especially for technical applications. They provide high mechanical strength and stiffness, good dielectric properties, high resistance to both heat and chemical attack, and good friction and wear properties.
Special features
Regulatory Affairs
Processing technology
Injection Molding

Rheological properties

Molding shrinkage (parallel)
0.25
%
Molding shrinkage (normal)
0.52
%

Mechanical properties

Tensile modulus
20200
MPa
Tensile modulus (-40°C)
21400
MPa
Tensile modulus (40°C)
16500
MPa
Tensile modulus (100°C)
9710
MPa
Tensile modulus (120°C)
9130
MPa
Tensile modulus (140°C)
8560
MPa
Tensile modulus (160°C)
7900
MPa
Tensile modulus (180°C)
7100
MPa
Tensile modulus (200°C)
5760
MPa
Stress at break
215
MPa
Strain at break
2.3
%
Flexural modulus
18500
MPa
Flexural strength
350
MPa
Charpy impact strength (+23°C)
88
kJ/m²
Charpy notched impact strength (+23°C)
15
kJ/m²
Izod notched impact strength (+23°C)
15
kJ/m²
Puncture - maximum force (+23°C)
1100
N
Puncture - maximum force (-30°C)
950
N
Puncture energy (+23°C)
4.2
J
Puncture energy (-30°C)
3.4
J

Thermal properties

Melting temperature (10°C/min)
221
°C
Temp. of deflection under load (1.80 MPa)
208
°C
Temp. of deflection under load (0.45 MPa)
217
°C
Coeff. of linear therm. expansion (parallel)
0.11
E-4/°C
Coeff. of linear therm. expansion (normal)
0.85
E-4/°C

Other properties

Density
1690
kg/m³

Material specific properties

Drying temperature dry air dryer
80
°C
Drying time dry air dryer
2-6
h
Residual moisture content
0.05-0.15
%
Melt temperature (Tmin - Tmax)
270-290
°C
Mold temperature
80-120
°C

Diagrams

Applications

Cross Car Beam

Industry
Automotive
  • •} Weight reduction of 20–30% vs. steel structures
  • •} High stiffness and strength – suitable for NVH and crash loads
  • •} Excellent functional integration (brackets, clips, ducts, etc.)
  • •} Cost-effective, scalable production using standard machinery
  • •} Sustainable: lower carbon footprint than traditional metals
  • •} High precision and dimensional reproducibility
}

Front End Modules

Industry
Automotive
  • •} 20–30% overall weight reduction vs. metal alternatives
  • •} Higher temperature resistance and creep performance vs. PP
  • •} Superior surface appearance compared to PA66
  • •} Thin-wall designs and complex geometries via light-flowing grades
  • •} Improved integration of structural and mounting functions
  • •} Robust and sustainable hybrid solutions (plastic/metal, hollow profiles)
}